
ABSTRACT: The cost and quality of food products are issues
that concern both the consumer and producer. In this research,
the process used for the production of a commercial spread was
subjected to a statistical experimental design for the purpose of
reducing the cost of production while maintaining or improving
the sensory quality. Three factors—the amount of oil added (x1),
the speed of puddling (x2), and the temperature treatment (A or
B; x3)—were varied according to a full-factorial design at two
levels. The experiments were performed over 2 d, and the fac-
torial design was complemented with three replicates for tem-
perature treatments A and B, which were performed on differ-
ent days. The products were evaluated with both sensory and
physicochemical measurements. Special attention was paid to
the hardness of the product since it was permissible to reduce it
slightly. In contrast, sensory quality aspects of the product in-
cluding butter-aroma and off-flavor, as well as other quality
properties such as spreadability, shine, and meltability, had to
be maintained at the present level or improved. Statistical eval-
uation of the data showed that it was possible to add high
amounts of oil (x1) without impairing the sensory quality of the
product and, hence, reduce the cost of production. The hard-
ness of the product was also slightly reduced when using the
high level of oil. In maintaining other sensory qualities such as
shine and spreadability at the present levels, the choice of tem-
perature treatment (x3) was important.
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Both the increasingly intense competition faced by new prod-
ucts and changes in consumer demands have altered the mar-
ket for spreads and cooking fats. These changes have made it
necessary to lower production costs while maintaining or im-
proving the sensory qualities of the products. To improve the
quality of an existing product, ingredients and factors in the
manufacturing process that affect the outcome of the process
must be identified. Clearly, the relevant information for prob-
lem solving must be of high quality and reliability, as dis-
cussed by Martens and Martens (1), and to make correct deci-
sions, the quality of the input data is important, as well as the
tools that are used for interpreting data. Traditional methods
for analyzing processes, such as changing a single variable at
a time, have limitations; over the years, the use of statistical

experimental design (2) in combination with multivariate
analysis has increased and proven to be a more efficient ap-
proach for product optimization. When using the appropriate
statistical experimental design (1–5), the investigated region
is thoroughly explored and the odds of finding relevant infor-
mation are greatly improved. The variables under considera-
tion are varied independently of each other, statistically ensur-
ing that the effect of each variable can be separately measured
and estimated by regression methods such as multiple linear
regression (MLR) (6) or partial least square regression to la-
tent structures (PLS) (7,8). However, product optimization is
not limited to experimental planning and experimental design.
The products made according to the experimental design must
in some way be analyzed, and the most common way to do this
for food products is to obtain a sensory evaluation of the prod-
ucts by a panel of assessors (9). It is important to ensure that
the difference between samples, i.e., the treatment effect, is
large enough to be detected by the sensory panel. This is best
achieved by using statistical experimental design. The rela-
tionship between the investigated variables and the sensory
quality of the product determined by sensory evaluation is then
modeled by multivariate methods such as PLS or MLR. An-
other common way is to use ANOVA in combination with
principal component analysis (10).

The present paper provides an example showing how a sta-
tistical experimental design was used in a spread-making
process to determine how factors in the process influenced the
quality of the final product, especially product sensory quali-
ties. The main objectives were to reduce the cost of produc-
tion and to investigate whether the sensory quality of the
product could be improved by slightly reducing its hardness
while maintaining or improving other sensory qualities, such
as shine and spreadability.

EXPERIMENTAL PROCEDURES

Statistical experimental design. A full-factorial design for
three factors—the amount of added oil (x1), the speed of pud-
dling (x2), and temperature treatment of the raw material (A
or B; x3)—was constructed using MODDE, Version 6.0, soft-
ware (Umetrics Inc., Umeå, Sweden). 

The type of oil, whether hydrogenated or vegetable, used
for the production of different types of spreads usually affects
sensory properties such as hardness more than the amount
does. Hydrogenated vegetable oils, compared to vegetable
oils, are known to be more stable and to have higher m.p.
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(11). As discussed by Schmidt et al. (12), blends of vegetable
oils and fully hydrogenated vegetable oils in various ratios
can be used to produce fats with different structures and phys-
ical properties, thus making them suitable for the production
of different types of margarines. However, in the present
study there was no possibility of changing the type of oil used
for the production of this specific product. Because of this,
the type of oil was not considered as a factor of interest.

In Table 1 the tested variables and their experimental
ranges are presented. The specific levels of the x-variables are
given here only as coded levels for commercial reasons.

The amount of oil used (x1), expressed as a percentage, is
a quantitative variable that is varied over a range of 7% be-
tween the lowest and highest levels. The speed of puddling
(x2) also is a quantitative variable and is varied over a range
of 25 rpm. The temperature treatment of the raw material (x3)
is a qualitative variable set at one of two levels, A or B. For
treatment A, the raw material is heated and then cooled in
several stages over a long period of time. For treatment B no
heating occurs; the raw material is directly cooled. Because
of the qualitative nature of x3, it is not possible to define an
average of temperature treatments A and B. 

In Table 2 the experimental design is presented. The re-
sulting data were evaluated using PLS. Three replicates each
for temperature treatments A and B, were made to estimate
the experimental error.

In experiments involving an operational process, it is not
always easy to control the levels of the variables precisely
and, as seen in Table 2, some of the experiments did not fol-
low the design exactly. This had two consequences: The ac-
tual range for x1 was 10.4% instead of 7%, and the design was
somewhat distorted. The skewness (distortion) of a design is
measured by the condition number (7), which shows how
close to orthogonal it is. The condition number, or index, is
the ratio of the largest and smallest singular values of X (i.e.,
the eigenvalues of X′X), where X is the scaled and centered
model matrix. A condition number of 1 indicates an orthogo-
nal design. If there is collinearity between the variables in a
design, the condition number of the design is large (>10). The
model matrix presented here has a condition number of 1.83
when all responses are fitted in the same model, indicating
that the model terms are almost orthogonal. A condition num-
ber of 1.83 is acceptable when using PLS or MLR for regres-
sion analysis. MLR and PLS give the same results as long as
the X-variables are orthogonal, or close to orthogonal, and
when only one response is regressed at a time. 

Sensory evaluation and chemical composition of the sam-
ples. The main focus in this study was to reduce the cost of
production. It was also of interest to investigate and evaluate
how the experimental factors influenced the sensory proper-
ties of the products and how the hardness of the product
would be reduced. To do so, standard procedures for sensory
evaluation were used. The sensory evaluation of the products
was performed in a room especially equipped for sensory
analysis. The samples were coded and presented to the eight
assessors in a balanced random order, one sample at a time.
All 14 samples were evaluated during the same session. To
describe the intensity of the different sensory attributes, the
assessors were instructed to score the intensity of each at-
tribute on a continuous scale from 0 to 10. Intensities close to
0 or 10 are too weak or too strong, respectively, and an opti-
mal sample has an intensity close to 5 for each attribute, ex-
cept for off-flavor where the optimal intensity is 0. The asses-
sors were not aware that the optimal intensity was close to 5.
Sensory responses are presented in Table 3. 

To ensure that the products met the required standards,
they were also chemically characterized. These results are
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TABLE 1
Description of the Factors Varied in the Experiment, the Type of Variable, 
and the Experimental Range for Each Variable

Variable Description Low High Range Type

x1 Amount of −1 +1 7% Quantitative
oil added, %

x2 Treatment of final −1 +1 25 rpm Quantitative
product, puddling

x3 Temperature treatment A B Two different Qualitative
of raw material treatments, A and B

TABLE 2
Full-Factorial Design with Replicates, and x3 as a Qualitative Factor,
Showing Both the Original Design and the Levels Actually Used in the
Experimentsa

Designb Actualc

Exp. no. x1 x2 x3 x1 x2 x3

1 −1 −1 A −0.5 −1 A
2 +1 −1 A 0.9 −1 A
3 −1 +1 A −0.7 +1 A
4 +1 +1 A 0.9 +1 A
5 −1 −1 B −1.0 −1 B
6 +1 −1 B 0.1 −1 B
7 −1 +1 B −1.2 +1 B
8 +1 +1 B 0.2 +1 B
9 0 0 A 0.0 0 A

10 0 0 A −0.2 0 A
11 0 0 A 0.2 0 A
12 0 0 B −0.5 0 B
13 0 0 B −0.7 0 B
14 0 0 B −0.3 0 B
aThe first three columns show the original design and the three last columns
the actual levels of the variables (in coded form) used. Experiments 9–11 are
replicates for temperature treatment A, and experiments 12–14 are replicates
for treatment B. 
bOriginal levels for the variables according to a full-factorial design at two
levels.
cActual levels of the variables for each experiment (in coded form) used in
the experiments. For a description of variables see Table 1.



presented in Table 4. According to the standards for this prod-
uct, the fat content (y8) must be at least 80% and the salt con-
tent (y10) must be approximately 1.2% (±0.1%). For the other
chemical parameters including iodine number (y7), water con-
tent (y9), and fat content in buttermilk (y13), there are no re-
strictions. MV8 (y11) and MV15 (y12) are parameters describ-
ing the hardness of the product, as measured with an LFRA
Texture Analyser (manufactured by CNS Farnell, Boreham-
wood, Hertfordshire, England, known formerly as the Stevens
Texture Analyser), representing mean values of four or five
measurements at 8 and 15°C, respectively.

Regression analysis. The similarities and differences of the

responses were simultaneously modeled by an interaction
model according to Equation 1, using a partial least square re-
gression to latent structures (PLS):

y = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3
+ b23x2x3 + b123x1x2x3 + e [1]

PLS is used to construct bilinear models between the matrix
of predictor variables, X, and the matrix of the dependent vari-
ables, the responses, Y, as follows: Y = XB + E. The regres-
sion model is then fit to provide information on how the vari-
ables in the X-matrix affect the responses in the Y-matrix, and
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TABLE 3
Summary of Sensory Evaluationa

Exp. y1
b y2

b y3
b y4

b y5
b y6

c

no. Hardness Spreadability Shine Meltability Butter-aroma Off-flavor

1 5.68 5.60 3.57 5.25 5.67 0.00
2 4.55 4.97 4.62 4.88 5.62 0.13
3 5.98 5.58 3.60 5.47 5.65 0.35
4 4.42 4.67 4.32 4.85 5.52 0.02
5 8.22 6.60 1.58 5.73 5.88 0.00
6 6.13 5.83 0.85 5.33 5.70 0.03
7 8.05 6.77 0.53 5.63 5.92 0.00
8 6.42 5.62 0.85 5.23 5.77 0.02
9 5.12 5.00 3.70 5.18 5.50 0.00

10 5.48 5.18 4.23 5.10 5.58 0.05
11 5.00 5.13 4.05 5.05 5.52 0.00
12 7.32 6.22 1.00 5.48 5.62 0.02
13 7.35 6.03 1.08 5.65 5.63 0.00
14 6.80 6.03 1.63 5.45 5.85 0.02
aSix sensory attributes were used to characterize the products. The intensity of each attribute was
evaluated by the use of a continuous scale from 0 to 10 and in each case is presented as the average
intensity for all assessors.
bFor y1–y5 (hardness, spreadability, shine, meltability, and butter-aroma), an intensity <5 represents
too little and >5 too much, i.e., the optimal intensity is close to 5.
cy6: Off-flavor should not be present in the product and the optimal intensity is therefore 0. 

TABLE 4
Summary of Chemical Characterization 

y7 y8
a y9

a y10
a y13

b y11
c y12

c

Iodine Fat Water Salt Fat content in
number content (%) content (%) content (%) buttermilk (%) MV8 (g) MV15 (g)

1 51.0 80.3 17.3 1.15 1.09 133 50
2 57.2 80.3 17.0 1.27 92 35
3 50.1 80.0 17.6 1.16 1.09 138 54
4 57.2 80.3 17.5 1.27 1.63 94 32
5 51.1 79.4 18.1 1.24 1.04 227 125
6 56.4 80.9 16.8 1.24 1.75 155 84
7 50.2 79.7 17.8 1.27 1.06 220 138
8 56.8 80.5 17.32 1.28 1.97 151 91
9 53.4 80.5 17.0 1.15 1.08 119 42

10 52.3 80.2 17.0 1.19 1.2 128 48
11 54.3 80.4 17.3 1.24 1.59 119 43
12 53.6 80.8 17.1 1.23 1.19 194 98
13 52.3 79.6 18.1 1.28 1.24 201 113
14 54.5 80.6 17.2 1.27 1.53 187 118
aThe fat, water, and salt contents of the product were determined by methods SBR International Dairy Federation (IDF)
1C:1987, IDF 10:1960, and IDF 88A:1986, respectively.
bFat content in buttermilk was determined by method SBR IDF 1C:1987.
cHardness was measured by an LFRA Texture Analyser (manufactured by CNS Farnell) at two different temperatures, 8 and
15°C. The average stress, measured in grams, derived from four or five measurements for each sample and temperature, is
presented in the table as MV8 and MV15.



the regression coefficients, B, are estimated using Equation 2,
so that the covariance between X and Y is maximized.

B = W(P′W)−1C′ [2]

In Equation 2, W represents the weight vector for the original
X-factors, P the loading vector, and C the weights for the re-
sponses in the Y-matrix.

The number of PLS components used in the model is de-
termined by cross-validation (13,14); to determine whether
the model is well fitted to the data, the parameters R2 and Q2

are estimated. R2 is a measure of the variation explained by
the model, whereas Q2 describes the predictive ability of the
model. These two parameters are calculated according to
Equations 3–5:

SSRES
R2 = 1 − ––––––––––– [3]

SSTOT.CORR

PRESS
Q2 = 1 − ––––––––––– [4]

SSTOT.CORR

PRESS = Σ(yobs − ypred)2 [6]

The term PRESS is the predicted error sum of squares deter-
mined by cross-validation. When using MODDE the term
PRESS is calculated as

(yobs − ypred)2

PRESS = Σ ––––––––––– [6]
(1 − hi)

where hi is the ith diagonal element of the Hat matrix,
X(X′X)−1X′.

In addition to R2 and Q2, ANOVA is used. The total varia-
tion corrected for the mean, SSTOT.CORR, is decomposed into
one part due to the model, SSREG, and the remainder, which
is not explained by the model, i.e., the residuals, into another
part, SSRES: SSTOT.CORR = SSREG + SSRES.

An F-test is then applied to confirm whether the variance
explained by the regression model is significantly larger than
the variance of the residuals. For a significant model, the cal-
culated FREG should be larger than the tabulated F-value (this
corresponds to a P-value smaller than the preset limit, usu-
ally P = 0.05),

VREG SSREG/dfREG
FREG = ––––– = ––––––––––– [7]

VRES SSRES/dfRES

where dfREG and dfRES refer to the degrees of freedom asso-
ciated with the regression model and the mean value, respec-
tively. All regression models inevitably contain some degree
of error, and the significance of this error, or lack of fit, also
can be statistically determined by the use of an F-test if there
are replicated observations. The residual sum of squares is
then further partitioned into lack of fit (SSLoF) and replicate

error (SSPE): SSRES = SSLoF + SSPE, and the F-value is calcu-
lated:

VLoF SSLoF/dfLoF
FLoF = ––––– = ––––––––––– [8]

VPE SSPE/dfPE

If the model has no significant error, the variances for the lack
of fit (VLoF) and the pure error (VPE) belong to the same dis-
tribution, so that FLoF is smaller than the tabulated F-value.

RESULTS AND DISCUSSION

Comparison of the R2 and Q2 values for the model fitted ac-
cording to Equation 1 showed that the model had a slight
overfit, i.e., the value of R2 is more than 0.2 units higher than
the value of Q2, due to the interaction terms between x1x2,
x2x3, and x1x2x3 that were classified as nonsignificant. These
interaction terms were excluded from the model, and a new
model was developed according to Equation 9,

y = b0 + b1x1 + b2x2 + b3x3 + b13x1x3 + e [9]

Four PLS components were significant according to cross-
validation, the first and second of which describe 53.4 and
16.3% of the total variance in X, respectively. 

According to the ANOVA and the corresponding F-test,
the model for the hardness of the product was considered sta-
tistically significant (P < 0.05), and the model error was con-
sidered not significant (P > 0.05).

The PLS weight plot for the two first PLS score vectors gives
an overview of the relationship between the x-variables and the
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FIG. 1. Loading scatter plot for the partial least squares (PLS) weights for
the first two PLS-dimensions, wc[1] and wc[2], plotted against each
other showing how the x-variables influence the y-variables (responses)
and the correlation between responses and between responses and vari-
ables. The responses y1, y2, y4, y5, y11, and y12 form a group and are
mainly positively influenced by x3(B) and negatively influenced by x1.
Other responses (y7, y10, and y13) form another group that is positively
influenced by both x1 and x3(B). The interaction term x1x3 and the main
term x2 are in the center of the plot, indicating that they are less impor-
tant for the model. w = the PLS weight for the x-variables, and c = the
weights for the responses.



responses (Fig. 1). The third and fourth PLS components de-
scribe 7.2 and 1.3% of the total variation in the data, respec-
tively. The PLS weight plot for these two components provides
little further information about the relationship between the vari-
ables and the responses, so they are not shown here.

From the plot in Figure 1 one can see that y1, y2, y4, y5, y11,
and y12 have similar weights and thus behave in a similar way.
The similarity in behavior of five of these six parameters is
not surprising considering the characteristics they represent:
hardness (y1), spreadability (y2), meltability (y4), and the
hardness parameters (y11 and y12). The other, less obviously
correlated parameter in this group is butter aroma (y5). This
group of responses is mainly positively influenced by x3 (B)
and negatively influenced by x1. Members of another group
of responses, y7, y10 and y13, are positively influenced by both
x1 and x3 (B). The reverse relationship applies to y3 and y6.
The interaction term x1x3 and the main term x2 are found in
the center of the plot, indicating that they are less important
for the model.

Table 5 presents the models and the regression coefficients
(with confidence intervals) for the variables in the model pre-
sented in Equation 9.

The most important response on which to focus is hard-
ness since one of the objectives was to decrease it. It is im-
portant to remember that changing the hardness of the prod-
uct also affects other sensory qualities of the products such as

spreadability and meltability because these characteristics are
highly correlated with each other. Thus, one has to ensure that
other sensory responses are either improved or maintained at
their present level while the hardness is decreased. The hard-
ness of the product is mainly influenced by the amount of oil
added (x1; Fig. 2). The temperature treatment of the raw ma-
terial (x3) also is shown to be a significant factor, and the
speed of puddling (x2) is shown not to be. 

The coefficient plot shows how the variables influence the
response, but further analysis is required to determine appro-
priate levels of the X-factors since the objective is to achieve
a product with a response near 5 rather than 0 or 10 for all vari-
ables except off-flavor. A contour plot of x1 and x2, with x3 at
a constant level, confirms that x2 (puddling) had no effect on
the hardness (Fig. 3). Both x1 and x3 had significant effects,
and it is possible to find a region with appropriate hardness of
the product using either treatment A or treatment B.

Temperature treatment A gave a raw material that was
much softer than treatment B. So as to reduce the cost of pro-
duction, a high level of x1 is desirable. For this reason, tem-
perature treatment B is preferable, since the raw material is
then harder and it is possible to use the higher level of x1.
However, as shown in Table 6, the shininess of the product
(characterized by the sensory attribute “shine”) did not reach
a satisfactory level when using treatment B. An intensity of
1.58 is not sufficient (cutoff level: optimal intensity for this
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TABLE 5
Final PLS-Model (y = b0 + b1x1 + b2x2 + b3x3 + b13x1x3 + e) Showing the Fit of the Model (R2 and Q2 values), and the Calculated Regression 
Coefficients with Confidence Intervals for Each Attributea

Aa R2b Q2b b0 b1 b2 b3(A) b3(B) b13(A) b13(B)

Hardness y1 4 0.97 0.90 6.10 −0.72 −0.00 −0.72 0.72 0.18 −0.18
Conf.int(±) 0.17 0.18 0.16 0.18 0.18 0.19 0.19
Spread y2 4 0.97 0.90 5.62 −0.39 −0.05 −0.34 0.34 0.09 −0.09
Conf.int(±) 0.09 0.10 0.08 0.10 0.10 0.10 0.10
Shine y3 4 0.97 0.87 2.45 0.13 0.12 1.46 −1.46 0.21 −0.21
Conf.int(±) 0.23 0.24 0.21 0.24 0.24 0.25 0.25
Meltability y4 4 0.93 0.81 5.31 −0.20 −0.01 −0.11 0.11 0.00 0.00
Conf.int(±) 0.06 0.07 0.06 0.06 0.06 0.07 0.07
Butter y5 4 0.64 0.50 5.66 −0.05 0.00 −0.07 0.07 0.03 −0.03
Conf.int(±) 0.07 0.07 0.06 0.07 0.07 0.07 0.07
Off-flavor y6 4 0.26 0.04 0.05 −0.01 0.02 0.04 −0.04 −0.02 0.02
Conf.int(±) 0.06 0.06 0.06 0.06 0.06 0.07 0.07
Iodine y7 4 0.94 0.70 53.65 2.82 −0.01 −1.24 1.24 −0.13 0.13
Conf.int(±) 0.50 0.53 0.46 0.52 0.52 0.55 0.55
Fat y8 4 0.50 0.27 80.36 0.30 −0.03 −0.10 0.10 −0.25 0.25
Conf.int(±) 0.26 0.27 0.24 0.27 0.27 0.28 0.28
Water y9 4 0.48 0.23 17.32 −0.24 0.09 0.01 −0.01 0.17 −0.17
Conf.int(±) 0.23 0.25 0.21 0.24 0.24 0.25 0.25
Salt y10 4 0.79 0.44 1.22 0.02 0.01 −0.04 0.04 0.02 −0.02
Conf.int(±) 0.02 0.02 0.02 0.02 0.02 0.02 0.02
MV8 y11 4 0.99 0.93 150.52 −26.05 −1.50 −26.09 26.09 8.56 −8.65
Conf.int(±) 4.04 4.27 3.73 4.20 4.20 4.42 4.42
MV15 y12 4 0.98 0.94 73.38 −14.61 1.48 −27.67 27.67 7.38 −7.38
Conf.int(±) 3.84 4.06 3.54 3.99 3.99 4.20 4.20
FatBM y13 4 0.78 0.43 1.38 0.31 0.05 −0.19 0.19 −0.10 0.10
Conf.int(±) 0.12 0.13 0.11 0.13 0.13 0.13 0.13
aAbbreviations: PLS, partial least squares regression to latent structures; CI, confidence interval; A, number of significant PLS components according to cross-
validation; R2, variation described by the model; Q2, predictive ability of the model; Spread, spreadability; Butter, butter-aroma; FatBM, fat content in butter-
milk; for other abbreviations see Table 4.



attribute should be around 5 for an acceptable sample). In
contrast, treatment A improved the intensity of the attribute
“shine” to an acceptable level. Other responses were quite
similar to those observed when treatment B was used.

The conditions in experiments 2 and 4 were identified as
the most favorable, and the results were very similar (see Ta-
bles 3 and 4) to the predictions for treatment A (Table 6). The
difference between experiments 2 and 4 was in the speed of
puddling (x2), which was at a low level in experiment 2 and
at a high level in experiment 4. Using high levels of oil (x1)
decreases the cost of production. The experiments clearly
show that it is possible to modify the process in such a way
that a high level of x1 can be used when the raw material has
been treated with either temperature treatment A or B. Treat-
ment A is preferable to maintain or improve the sensory qual-
ities of the product. The data also show that experimental de-
sign and sensory evaluation work well in combination as has
been shown in various previous studies (10,15,16). However,
in experiments involving evaluation by a sensory panel, it is
important to ensure that the differences generated by the ex-
perimental variations are sufficiently large to be detected by
the sensory panelists. It is also important to quantify the re-
sponses, in this case the sensory attributes, in such a way that
the results can be evaluated using regression methods (such
as MLR or PLS) or ANOVA, which are commonly used
methods for analyzing experimental data in food research.
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FIG. 3. Contour plots for the temperature treatments, A and B (panels
[a] and [b], respectively) showing changes in the hardness of the prod-
uct when x1 and x2 are varied between high and low levels (+1 and −1,
respectively). The numbers in the plot are the intensities of the attribute
(hardness) when the variables x1 and x2 are changed from low level to
high level. Optimal intensity for hardness is slightly below 5, and both
temperature treatments can be used to achieve this. But when using
temperature treatment A, a higher level of x1 can be used, which is de-
sirable.

TABLE 6
Predictions Using the High Level (+1) of x1 and the Low Level (−1) of
x2 for Treatments A and B

Predictions Predictions

Y Treatment A Treatment B

+/−a +/−
y1 Hardness 4.39 0.44 5.76 0.57
y2 Spreadability 4.82 0.30 5.49 0.39
y3 Shine 4.36 0.72 1.58 0.94
y4 Meltability 4.91 0.14 5.12 0.18
y5 Butter-aroma 5.53 0.19 5.68 0.25
y6 Off-flavor 0.03 0.20 0.07 0.20

y7 Iodine number 56.91 0.13 59.41 0.17
y8 Fat content 80.30 0.58 81.39 1.01
y9 Water content 17.10 0.52 16.93 0.54
y10 Salt content 1.26 0.1 1.25 0.16
y11 MV8 96.02 15.83 134.37 25.01
y12 MV15 34.45 16.81 57.77 26.56
y13 Fat content in buttermilk 1.47 0.46 2.16 0.51
aThe +/− column represents the estimated prediction error. For abbreviations
see Table 4.

FIG. 2. PLS regression coefficients calculated for the hardness of the
product. R2 and Q2 for this response are 0.971 and 0.902, respectively.
The size of the regression coefficient (bars in the column plot) and the
confidence interval (bars on the column plots) are used to determine
whether a variable has a significant effect on hardness. A variable with
a large, positive regression coefficient tends to increase hardness, mak-
ing the product harder when used at a high level. In contrast, a variable
with a large negative regression coefficient tends to make the product
softer when used at a high level. For abbreviation see Figure 1.
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